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In chapter 1 you learned that the two core services provided by SSAS are OLAP and data 
mining. So far, we’ve been exploring UDM from the OLAP “dimension” only, completely 
ignoring its smaller, but no less important, cousin – data mining. Now, it’s time to switch gears 
and give data mining its fair share of attention. In this chapter, we will see how the data mining 
technology complements OLAP to provide rich data analytics. You will learn:  

• The fundamentals of data mining technology.  
• The building blocks of SSAS data mining. 
• The necessary steps to implement data mining models. 
• How to construct data mining models from relational data sources. 

 
We will put into practice what we’ve learned so far by implementing a data mining model for 
targeted campaigning. You can find the enhanced SOS OLAP UDM in the Ch07 solution file. 

7.1 Understanding Data Mining 
Data mining is a newcomer to the business intelligence arena. It is new because only in the past 
decade the computation power reached the necessary gains to support data warehousing and 
mining algorithms. Though a young technology, data mining has an exciting future. According to 
a market forecast study by IDC, data mining is the fastest growing business intelligence segment, 
surpassing OLAP, relational reporting, or any other business intelligence field. In 2005, the data 
mining market is expected to grow 32%! 
 Realizing that data mining is a logical next step for rich data analytics, Microsoft introduced 
data mining features in SQL Server 2000. Since the initial feature set was rather limited, data 
mining didn’t enjoy broad acceptance. For example, data mining in SQL Server 2000 supported 
only two algorithms (Microsoft Decision Trees and Microsoft Clustering) and didn’t provide 
adequate model building and tuning tools. In my opinion, all this is going to change with SQL 
Server 2005. After several years of intensive research and investment, the Microsoft data mining 
technology comes of age in SQL Server 2005. The data mining engine has been completely re-
architected. Five new algorithms have been added to address various data mining scenarios. The 
data mining tools have undergone a major uplift and now support custom visualization for each 
algorithm. A great effort has been made to integrate data mining with other Microsoft BI 
technologies, including UDM, Integration Services and Reporting Services, and to enhance the 
programming interfaces to build intelligent applications. 
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7.1.1 What is Data Mining? 
Data mining can be described as a business intelligence process that offers three main services -- 
data exploration, pattern discovery, and prediction. Let’s find out more about these services and their 
practical usage scenarios.  

Data mining services 
Data mining could help organizations to explore large volumes of valuable data and derive 
knowledge from it. For example, you may have a huge Customer UDM dimension with thou-
sands, if not millions, of members. Data mining can help you segment these customers to find 
out, for example, what is the typical profile (age, income, occupation, etc.) of customers buying a 
given product. Many organizations use data mining to find patterns in data, e.g. to recommend 
other items that the customer may be willing to buy together with a given product.  
 Finally, an organization can leverage data mining to predict business metrics based on existing 
data statistics, e.g. to find out what the next quarter sales could be given the sales statistical data 
for the past year. As you can imagine, market researchers and data analysts can leverage data 
mining as a potent and valuable tool to understand a company’s business and its customers 
better. 

Data mining and OLAP 
Considering the services that data mining provides, your first impression may be that it is a 
technology competing with OLAP. True, both technologies seek to provide rich data exploration 
and reporting. Also, both technologies are used typically in conjunction with data warehousing to 
process and analyze vast volumes of data. At the same time, however, data mining seeks to 
provide different services than OLAP and it should be viewed as a complementing, rather than 
competing technology.  
 To understand this better, consider the report shown in Figure 7.1. I generated this report 
from our sample SOS OLAP cube. It shows the top ten Canadian customers that have pur-
chased Adventure Works products for four consecutive years. This report demonstrates one of 
the main strengths of the OLAP technology which is data aggregation. As you know by now, SSAS 
is designed to aggregate data across dimensions fast.  
 However, as useful as this report is, it doesn’t tell us much about the customers themselves. 
For example, using just OLAP we have no easy way to find out data patterns, such as customer 
buying habits, perform basket analysis, or recommend products based on a customer’s past 
purchase history. That’s because once the data has been aggregated, hidden data patterns, data 

Figure 7.1  OLAP is a great 
technology for efficient data 
aggregation.  
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relationships, and data associations are often no longer discernable. Moreover, OLAP doesn’t 
provide prediction capabilities. For example, we can’t forecast product sales for the fourth 
quarter of 2004.  

Table 7.1   OLAP is suitable for model-driven analysis, while data mining provides data-driven analysis.  

Characteristic OLAP Data mining 

Pattern discovery Limited Core service 

Prediction No Core service 

Object model Cubes, dimensions, and measure groups Structrures and mining models 

Business metrics Measures Dimensions (usually) 

Analytics process On-going, historical analytics Done typically on as-needed, “ad hoc” basis 

 
The above business requirements can be addressed easily by using data mining, as the examples 
in this and next chapters will demonstrate. Table 7.1 outlines other major differences between 
data mining and OLAP. They will be explained throughout the course of this chapter.  

7.1.2 Data Mining Tasks and Algorithms 
Instead of looking at a crystal ball, data mining practitioners perform their “magic” by leveraging 
well-known mathematical models that originate from three academic fields: statistics, machine 
learning, and database theory. Statistical models that are particularly related to data mining are 
those that are designed to find data correlations, such as Naïve Bayes and Clustering. Other 
models come from the machine learning (or Artificial Intelligence) research field, such as 
decision trees and neural networks models. Finally, database algorithms are used to process large 
data volumes efficiently.  
 Data mining can be applied to a number of different tasks. The most popular data mining 
tasks are association, classification, segmentation (clustering), regression, and forecasting. An 
essential coverage of these tasks is provided in the OLE DB for Data Mining Specification (OLE 
DB/DM) and the excellent webcasts from the SSAS data mining team (see Resources). Discuss-
ing them in this chapter will be redundant. 
 

 

Note  The OLE DB for Data Mining specification was created in 2000 by Microsoft with the assistance of 
other data mining partners to define an industry standard for creating and modifying data mining models, 
train these models, and then predict against them. I highly recommend that you read the specification (see 
Resources section).  It is a great resource for understanding not only the Microsoft data mining implementa-
tion details, but also the data mining technology and algorithms in general. Currently, data mining is part of 
the XMLA specification.  

 
The mining tasks are realized by well-known mathematical algorithms. SSAS 2005 implements 
seven data mining algorithms. Choosing an algorithm to perform a given task can be challenging. 
Table 7.2 should help you choose the right algorithm for the task at hand.  
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Table 7.2   Data mining tasks and algorithms to implement them. 

 
Note that in some cases a given task can be performed by several algorithms. The ones that are 
most suitable are highlighted in Table 7.2. For example, the classification task can be realized by 
the Decision Trees, Clustering, Naïve Bayes, Sequence Clustering, and Neural Network algo-
rithms, but the Decision Trees algorithm should be your best choice.   

 
It is also important to note that the SSAS data mining architecture is extensible. Custom data 
mining algorithms can be plugged in (see Resources section for more information) and custom 
mining viewers can be implemented to replace the ones provided by Microsoft. 

7.1.3 Data Mining Architectural View 
Now, let’s see how SSAS data mining works and how it fits in the Microsoft Business Intelli-
gence Platform. Figure 7.2 shows a high level architectural view of SSAS data mining. The SSAS 
data mining architecture consists of data mining models (processed and executed on the server), 

Task Decision 
Trees 

Clustering Association Naïve Bayes Sequence 
Clustering 

Neural 
Network 

Time Series 

Classification         

Segmentation         

Association        

Regression        

Forecasting        

Figure 7.2   Data mining models can 
source data from relational databases 
or UDM cubes and can be integrated 
with different types of clients.  
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data sources that feed the models, and mining clients that retrieve and analyze the predicted 
results.  

Data mining models 
As shown in Figure 7.2, data mining technology in SSAS is exposed to clients as one or more 
data mining models hosted in an Analysis Services database. I will explain in more detail what a data 
mining model is in section 7.2.1. For now, know that a data mining model is just a UDM object 
that takes some input data and outputs the predicted results using the selected mathematical 
algorithm. A data mining model can be designed and managed using BI Studio or programmatic 
interfaces, such as Analysis Management Objects (AMO).  

Data sources 
Data mining models can be fed with data from two types of data sources. 

• Relational data sources – A data mining model can source its data from any data source that 
has an OLE DB driver, including SQL Server, Oracle, Teradata, etc. If data is available 
as text files, Integration Services can be used to extract, transform, and load the source 
data into a relational data source or directly in the model. Similar to SSAS cubes, a data 
mining model doesn’t access the data source directly. Instead, it uses a data source view 
to isolate itself from the relational data source schema and optionally enhance it. 

• UDM – A data mining model can be built on top of an SSAS 2005 cube. In this case, the 
cube and the data mining models must be hosted in the same database. A DSV is not 
needed when a data mining model draws data from a cube.  

 
In this chapter, I will show you how to build a data mining model from a relational data sources. 
The next chapter demonstrates how you can use UDM as a data source of mining models. 

Data mining clients 
In the simplest scenario, the end user could use Microsoft-provided or third-party data mining 
viewers to browse the data mining models inside the BI Studio IDE. At the other end of the 
spectrum, a custom application front end could be implemented to query the mining models and 
display the predicted results.  
 Data mining is well integrated with the other products of the Microsoft Business Intelligence 
Platform. For example, the results of the data mining model can be used to create a dimension to 
enrich an SSAS cube. Integration Services include tasks specifically tailored for data mining. For 
example, in the next chapter, we will implement an SSIS package that uses the Data Mining 
Query Task to classify customers on the fly. Finally, Reporting Services can be used to deliver 
the data mining results to the end users in the form of a standard or ad-hoc report. An SSRS 
integration example is demonstrated in chapter 18. 

7.1.4 Data Mining Extensions (DMX) 
Clients can create and query data mining models and obtain predictions by sending DMX (Data 
Mining EXtensions) statements. To facilitate a wide spread adoption of data mining and 
minimize the learning curve, the SSAS team was set to provide a query language that is familiar 
to database developers and easy to use. Since almost everyone knows SQL, the SSAS team 
decided to adopt it as a foundation for mining queries and extend with data mining-specific 
features (documented by the OLE DB for Data Mining Specification). Similar to SQL, DMX 
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provides both Data Definition Language (DDL) and query constructs. For example, here is what 
the basic form of a DMX SELECT query looks like: 
SELECT <expression list> FROM <mining model> 
[NATURAL] PREDICTION JOIN 
<source data> AS <alias> ON <column mappings> 

 
Let’s briefly explain the DMX-specific constructs in the SELECT statement. 

Expression list 
As an SQL SELECT statement specifies which columns from a relational table will be returned, 
the expression list in a DMX SELECT statement enumerates the predictable columns from the 
model that will be retrieved. For example, if I have a cluster mining model for customer profil-
ing, the expression list can bring some customer-related columns, such as Age, Occupation, 
Education, etc. 
 In addition, DMX supports a set of functions (about thirty) that can be used in prediction 
queries. For example, you can use the PredictCaseLikeliHood function to determine the possibility 
for a customer to belong to a cluster. Again, similar to SQL joins, the PREDICTION 
JOIN...ON clause links the mining model with the source data. If the names of the mining 
model match the source data columns NATURAL PREDICATION JOIN can be used and the 
ON clause can be omitted. In this case, the columns relationships are automatically inferred 
through a naming convention.   

Source Data 
The source data specifies the input dataset that will be predicted against the mining model and it 
could be: 

• Database OPENQUERY or OPENROWSET query – Use a database query to feed the 
mining model with data fro a relational table.  

• Singleton query – In this case, the data values are embedded in the SELECT statement. 
• Another DMX query – DMX queries can be nested. 
• Rowset parameter – A client can pass an application rowset, such as an ADO.NET dataset 

or a data reader, as an input to the mining model.  
 
Examples of the first two options are provided in this chapter. Chapter 17 includes more 
examples that demonstrate how custom applications can create and query data mining models. 

7.2 Data Mining Objects 
Now, let’s see how the data mining technology is realized in SSAS. UDM defines two main data 
mining objects -- data mining models and data mining structures. Let’s explain structures and 
models in more details. We will start with the data mining model since it is the cornerstone of 
the SSAS data mining technology. 

7.2.1 Data Mining Models 
The OLE DB for Data Mining Specification describes a data mining model as a virtual object 
that is similar to a relational database table. A mining model defines how data should be analyzed 
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and predicted. For example, suppose that you need to implement a data mining model to 
promote the latest bicycle product as part of a mailing campaign effort. To identify which 
customers are most likely to respond to the campaign, you may design your model as the one 
shown in Figure 7.3. 

Model definition 
Just like a relational table, the mining model definition consists of columns. Each column can 
have different usage inside the model. If a column identifies a row in the model (also called a 
case), the column usage type needs to be set to Key. For example, in our mailing campaign model, 
the role of the key is fulfilled by the Customer ID column because it identifies uniquely a row in 
the model. A column with a usage type of Input is used as an input parameter to the data mining 
algorithm. In our case, all demographics-related columns could be used as input columns. For 
example, we may wish to find the correlation between the Commute Distance column and the 
probability that a customer will purchase a bicycle. To do so, you set the Usage type of the 
column to Input. 
 A data mining model can have one or more columns with Predict or PreductOnly Usage 
types. A column with a Predict Usage type is used both for input and predictions. In comparison, 
as its name suggests, a PredictOnly column is used only for predictions. In the mailing campaign 
scenario, we need to predict what category of customers is likely to become bike buyers based on 
past purchases. Therefore, we need to set the Bike Buyer Usage type to Predict. Finally, we may 
decide to ignore a given column. For example, the Name column is not useful to find patterns. 
That’s why we set its Usage to Ignore.   
 Does the column usage type bring any recollection? Indeed, we can loosely relate a data 
model to a UDM dimension. Just like a UDM dimension, a data model consists of columns 
(attributes) which can have different usage types within the containing model. I will be quick to 
point out that one noticeable difference between a UDM dimension and a data mining model is 
that a mining model doesn’t store the input dataset. Instead, the input dataset is used only to 
train the model. The server stores only the results of the prediction process in the form of rules 
or patterns.  

 
Figure 7.3    A data mining model consists of set of columns with different usage types. 

Figure 7.4   A data mining model 
must be trained before it can be 
used for predictions.  
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Training the model 
Before a mining model can be used, it must be trained by loading the model with data. SSAS 
trains a model by executing the mathematical algorithm associated with the model to derive 
useful patterns or rules from input data (Figure 7.4). You can train a model by either processing 
it (e.g. using BI Studio or an SSIS package), or by submitting a DMX INSERT INTO statement. 
The latter option is typically used when creating the model programmatically, e.g. by using 
ADOMD.NET. For example, you can use the following statements to create and train a hypo-
thetical CustomerProfilingMC mining model that uses the Microsoft Clustering algorithm: 
 
CREATE MINING MODEL [CustomerProfilingMC] 
( 
    Customer LONG KEY,  
    Age LONG CONTINUOUS, 
    [Yearly Income] DOUBLE CONTINUOUS, 
    [Occupation] TEXT DISCRETE 
) 
Using Microsoft_Clusterting 
 
INSERT INTO  CustomerProfiling (Customer, Age, [Yearly Income], Occupation)  
OPENQUERY(MyLinkedServer, ‘SELECT CustomerID, Age, Income, Occupation FROM Customers’) 
 

In this case, an OPENQUERY clause is used to load the model with data from a relational table 
Customers. Note that we cannot query the table by using a SELECT statement because the 
model resides in an SSAS database (thus the OPENQUERY statement). The time needed for 
training a data mining model depends on the amount of input data and the complexity of the 
algorithm. The end result of training a data model is patterns or rules that are saved on the 
server.   

Performing predictions 
Finding patterns in historical data is just half of the work in a typical data mining project. The 
next logical step is to query the mining model and obtain predictions against new data. For 
example, after training a customer profiling mining model with historical data, the model could 
identify (predict) a particular class of customers that are likely to purchase a product. Given the 
predicted results, we may need to know how likely it is that a new customer will become a 
potential buyer. To understand this better, it may be helpful to visualize a data mining model as a 
black box, which takes the data to be predicted as an input, applies the learned patterns, and 
outputs the predicted results (Figure 7.5). 
 Here, the term prediction is used rather loosely to describe the result of the mathematical 
calculation that the mining algorithm performs against the new dataset. The result may not even 
have a time dimension. For example, the output of the data mining model could be classifying a 

Figure 7.5   A trained mining 
model takes an input dataset, 
applies the learned patterns, and 
returns predications.  
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customer to a given cluster if the data mining task is customer profiling. Considering the 
CustomerProfilingMC model example, this is how an intelligent application can send a DMX 
SELECT query to find out how likely it is that a given customer with the supplied demographics 
criteria may belong to a given cluster. 
 
SELECT ClusterProbability('Cluster 8') 
FROM [CustomerProfilingMC] 
NATURAL PREDICTION JOIN 
(SELECT 35 AS [Age], 
  'Professional' AS [Occupation], 
  80000 AS [Yearly Income] 
) AS t  

 
In this case, the application uses a singleton query to pass the data values directly to the model. 
Alternatively, the second SELECT statement can retrieve the data to be predicted from a data 
source. 

Data mining tables 
When a model is trained, input data must be passed to the model as a single table which is called 
a case table. In the simplest case, each row column in this table will have only one value, as with 
the mailing campaign scenario shown in Figure 7.3. Sometimes, you may need to find correla-
tions between related datasets. For example, suppose that you need to perform customer basket 
analysis to recommend related products to customers (customers who bought A product also 
bought B product). To implement the basket analysis mining model, you will need two tables, as 
shown in Figure 7.6.   

 
This model has two tables, Customer and Product, linked with a one-to-many relationship. Since 
a mining model can have only one input table, this schema presents an issue because we need to 
“flatten” the dataset to a single table. SSAS solves this dilemma by allowing us to “embed” the 
child table (the one on the many side of the relationship) into a column of the parent table in the 
form of a nested table. For example, in our case, the child table (Product) could be defined as a 
nested table embedded inside the Products Bought column of the Customer parent table. SSAS 
supports a single level of nesting only. In other words, a child table cannot have another nested 
table. The OLE DB for Data Mining Specification also defines the term case and case set.  

 
Definition   A case is a collection of data associated with a single row in the input table. A case set is the 
collection of all cases (all records of the parent table plus all records of the nested tables).  

 
For example, in our fictitious basket analysis model, a case represents a single customer and its 
associated products. In the mailing campaign example, a case simply corresponds to an individual 
customer because the Customer table doesn’t have nested tables.  

Figure 7.6  A correlated 
dataset can be exposed 
as a nested table.  
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7.2.2 Data Mining Structures 
As you’ve seen, a data mining model could simply be described as a collection of table columns 
and a mining algorithm that acts upon the data contained in these columns to analyze it and 
perform predictions. At the same time, we’ve learned that a particular data mining task may be 
performed by using different algorithms. Naturally, you may be willing to try a few algorithms 
with a given mining task to select the most accurate algorithm. Since, in this case, all task 
algorithms will use the same data schema, it may make sense to re-factor the database schema 
definition in its own object, just like a data source view may be shared by several cubes. In SSAS, 
a data mining structure gives you this level of abstraction. 

What is a data mining structure? 
You can think of a data mining structure as a blueprint of the database schema which is shared 
by all mining models inside the structure. In this respect, developers familiar with object-oriented 
programming may relate a data mining structure to a class, while the actual data mining models 
that share the same structure can be described as concrete instances (objects) of the class.  The 
relationship between mining structures and models is shown in Figure 7.7. 

  
An Analysis Services Database may have many data mining structures. Each structure may 
contain one or more data mining models. 

Why have data mining structures? 
Why do we need separate data mining structures instead of uniting them into a coarser model, 
e.g. a cube? As I’ve mentioned, the main reason for this is to reduce complexity. Data mining 
models may be rather involved and may require experimenting with several algorithms. A 
structure encapsulates the logical mining domain at hand and the associated prediction algo-
rithms. For example, a mailing campaign structure may have three data mining models associated 
with it that use three different algorithms, e.g. a Decision Tree, Clustering, and Naïve Bayes 
algorithms. Second, once the structure is processed, it is loaded with data and this data can be 
shared by all models within this structure. In other words, all mining algorithms contained in a 
structure can be trained with the same dataset.   

 

Note With the introduction of structures in SSAS 2005, one potential source of confusion could be the 
naming convention that Microsoft has chosen for data mining objects. A mining model definition (a file with 
extension *.dmm) in fact represents a mining structure, while the mining models inside the structure 
actually represent one or more mathematical algorithms which perform the task. To make things even 
more confusing, the term data mining model is used to describe both a mining domain (e.g. sales forecast-
ing), and a specific algorithm (model) inside the structure.  

Figure 7.7   Data mining 
structures are containers 
of data mining models.  
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Finally, there are certain performance advantages of using structures as a method of data model 
isolation. For example, you can make changes to a data model inside a structure and even add 
new models, without having to re-process the structure.  

The “structure” of a data mining structure 
Just as a dimension definition in UDM describes the dimension attributes and their bindings, a 
data mining structure definition contains columns and column bindings. In this respect, a 
column in a mining structure can be related to a dimension attribute. As such, a structure column 
has a Type which denotes the column data type of the underlying table. The column type could 
be one of the five data types supported by the OLE DB/DM specification (Text, Long, Boolean, 
Double, and Date).  

Column bindings 
Again, similar to a dimension attribute, a structure column has KeyColumns and NameColumn 
properties that specify how the structure column is bound to the underlying data source column. 
Similar to a dimension key attribute, the KeyColumns property is used to identify the mining 
cases.  

 

Warning   Usually, the structure key coincides with the primary key of the relational case table (relational 
data source) or the dimension key of the case dimension (OLAP source). That’s because all other 
columns (attributes) are related to the table (dimension) key. Therefore, you can choose any column as 
an input column. However, there is nothing stopping you from choosing another column as a structure 
key. For example, if you source data from the Customer dimension (SOS OLAP cube), you may choose 
to set the structure key to the Country attribute. In this case you will have as many input cases as the 
number of unique country members. When you do so, however, you may automatically disqualify other 
attributes, e.g. customer’s age, gender, because they are not related to the key. 

 
The NameColumn property could be used to supply alternative names of the attribute members 
if they need to be different than the key column values. Finally, when a SSAS 2005 cube is used 
as a data source, the Source property specifies which dimension attribute the structure column is 
bound to. 

Column content 
To predict data properly, a data mining algorithm needs to know in advance the content type of 
the column. The model designer uses the Content column property to specify the column 
content type. SSAS data mining supports several column content types which are explained 
thoroughly in the OLE DB for Data Mining specification. The most common ones are Discrete 
and Continuous. An example of a discrete content type is a customer gender column because it 
would contain only a few distinct values, e.g. male and female. An example of a continuous column 
is a customer income column because it may contain arbitrary values.  
 Some algorithms may not support all content types. For example, the Naïve Bayes algorithm 
supports only discrete columns as an input. If you need to use a continuous column, you can use 
the Data Mining Designer to discretize it into buckets by setting its Content property to Discretized 
and specifying the discretization bucket count and method. This is very similar to the process of 
discretizing attribute members of a UDM dimension, as we discussed back in chapter 4.  

Processing mining structures and models 
Just as a cube needs to be processed before it is first used, or when the cube structure changes, 
mining objects (structures and models) need to be processed occasionally.  
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Processing structures 
Some common reasons for processing a mining structure include changes to the structure 
definition (e.g. a column is added or deleted), re-processing the source OLAP dimension is re-
processed (OLAP data mining only), and loading the structure with new data. During the 
structure processing, the server retrieves the distinct values of each structure column (similar to 
dimension processing). To optimize the performance of the mining models contained in the 
structure, the structure data is compressed and stored on the server using the same storage 
primitives as UDM dimensions and measures.  

  
An interesting processing detail is that, behind the scenes, the server creates private cubes and 
dimensions to store the structure data. Specifically, the server generates a private dimension for 
each discrete structure column and a private measure for each continuous structure column. 
Each nested structure table is mapped to a measure group.  

Processing mining models 
As the data evolves (e.g. records are added, changed, or deleted), the mining model needs to be 
re-trained to keep its prediction capability on a par with the changes in the historical data. The 
terms processing and training are used interchangeably to refer to the process of loading data into a 
mining model to train the model. A model can be processed as part of processing the containing 
structure. For example, when you press the Process the mining structure and its related models toolbar 
button of the Data Mining Designer, the server initiates the processing task in two passes. 
During the first pass, the server processes the structure to load it with data. Next, the server 
processes the model(s) contained within the structure.  
 A model can also be processed (trained) independently of its containing structure (recall that 
a model doesn’t store the trained dataset but just the predicted patterns). For example, after 
processing a structure, you may decide to train only one of the structure models with the new 
data while the rest should stay unaffected. To do so, you can use an SSIS package to process 
mining models selectively or you can train the model programmatically. Refer to the product 
documentation of the DMX INSERT INTO statement for more information about how 
structure and model processing affect each other. 

Processing options 
SSAS provides a number of processing options to process a structure and its mining models, 
including ProcessFull, ProcessStructure, and ProcessDefault. ProcessFull processes both the 
structure and its models in one pass. ProcessStructure processes only the structure. Specifically, 
ProcessStructure generates the structure metadata, loads the structure with data, and caches it on 
the server. Once the structure data is cached, you can process the containing mining models by 
choosing the ProcessDefault option.  

7.2.3 The Data Mining Design Process 
As with other IT projects, you may benefit from a guided methodology when implementing data 
mining models. One such methodology may encompass the steps shown in Figure 7.8. It is 
loosely based on the CRoss Industry Standard Process for Data Mining (CRISP-DM) process 

 
Tip  You don’t need to process a structure if you’ve only made changes to its mining model(s). For example, 
the structure need not be processed if you add a new data model. 
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model developed in Germany (see Resources). The tools you can use to perform the step are 
shown below the task name. 

 
Although the flow depicted in Figure 7.8 is linear, in real life, you may find that you need several 
iterations to finalize the data model. Data mining models can be complex and there are really no 
magic rules to create an optimum mining model. For example, after validating the model, you 
may be surprised to find out that certain input columns have a stronger impact on the predicted 
results than the obvious candidates, e.g. the customer income is a stronger factor in buying a 
bicycle than the commute distance.  
 To refine the model, you may need to go back to step 2, e.g. to add more demographics-
related columns, e.g. a column that indicates if the customer is a homeowner. This shouldn’t 
discourage you (unless you need to collect a fine when going back, perhaps). Remember, data 
mining is more of an art than a science. Let’s explain briefly the purpose of each step in the 
design process. 

Step 1: Define mining domain 
Start your data mining project from the drawing board by gathering the business requirements. 
What business problem are you trying to solve? Sales forecasting? Customer profiling? Basket 
analysis? End of the world, as we know it? As with every project, it is essential to start with a 
clear objective. This objective may be formulated as “Perform a data mining analysis to profile 
customers and identify those who are most likely to respond to a product X mailing campaign 
based on customer demographics”. Once you’ve defined the mining domain, you need to 
conduct data availability study to identify the dataset that will support the model. This may 
translate into questions, such as: 

• What input columns do I need? – For the mailing campaign scenario, these could be cus-
tomer gender, income, age, etc? 

Figure 7.8  A typical data 
mining process consists of 
seven steps.  
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• Where is the data that will represent the input dataset stored? – You need to identify which data 
source captures the data you need. 

• How can data be extracted? – As noted, SSAS data mining can source data from a relational 
data source or a UDM cube. To prepare the input dataset, you may need to extract data 
from its original data source, which may require an ETL project of its own (now you 
know where data mining derives its name from). 

Step 2: Prepare data 
As noted, the source data may not be directly available and may require ETL processes to load 
the data into the desired input format. For example, if the data is kept in a mainframe database, 
data may need to be extracted to flat files, transformed, and loaded into a relational database, as 
we’ve demonstrated in the preceding chapter. Consider SQL Server Integration Services for the 
data preparation step.  
 The result of this project step is a relational data schema (in the form of a table or a view) or 
a UDM cube that will feed all input columns and nested tables of the data mining structure. You 
should have a clear understanding about the semantics of each input column and its business 
purpose. People new to data mining may have unreasonable (clairvoyant) expectations by 
believing that data mining can do everything by just running the Mining Wizard against a 
database. In reality, however, you will find that the more you know your data, the more effective 
your prediction results will be.  
 For example, instead of seeking correlations between all columns of the customer table and 
the probability that a customer will purchase a given product, it may make sense to identify a 
subset of the most likely candidates that may impact the customer decision, e.g. commute 
distance, home owner, education, etc. A less focused approach may require more time to process 
the data mining models and interpret the results.   

Step 3: Construct data schema 
As you know by now, a data source view isolates UDM from the underlying relational data 
schema. If you source your input dataset from a relational database, you need to construct a data 
source view. This means that you can take the relational schema as it is and adjust it to meet your 
structure requirements. For example, if security policies rule out direct changes to the data source 
schema, you can define named queries and calculations at a DSV level. Or, you can create logical 
relationships among tables in the absence of referential joins.   
 The end result of this step is the definition of the data mining structure that will serve as 
foundation of the data mining model(s).   

Step 4: Build model 
Once the structure is in place, you proceed to create the actual data mining models. Start by 
consulting with Table 7.2 to identify one or more algorithms that can be used to perform the 
data mining task at hand. Next, use the BI Studio Data Mining Designer to implement the 
model(s). For example, the data mining task that you will be performing in the mailing campaign 
scenario shortly is classification. This task can be performed by the Decision Trees, Clustering, 
Sequence Clustering, Naïve Bayes, and Neural Network algorithms.  
 If multiple algorithms can be used to implement the data mining task, a good approach is to 
start with a quick and simple algorithm, e.g. Naïve Bayes. However, as a best practice, I recom-
mend you build additional mining models that use different algorithms to select the optimum 
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algorithm for the task at hand. The Data Mining Designer makes it very easy to create corre-
sponding data mining models since they share the same structure. 

Step 5: Explore model 
Once the model is built and trained, you are ready to explore it and analyze its predictive results. 
The Microsoft-provided algorithms come with excellent graphical viewers. All viewers have 
multiple tabs to see data from different angles.  

Step 6: Validate model 
In addition, you need to validate the accuracy of the data mining model(s) you’ve built. This is 
especially important if you have a structure with several models that can perform the same data 
mining task. One practical approach to validate a data mining model is to prepare a smaller input 
dataset that you can easily train and evaluate. Once the test dataset is ready, you can use the 
Mining Accuracy Chart tab of the Data Mining Designer to compare the model accuracy. You 
can create a lift chart or a classification matrix to do so.  

Step 7: Deploy model 
Your data mining model is ready. As a final step, you need to deploy and configure the model to 
the production server. As part of the configuration process, don’t forget to secure the model by 
specifying which users and Windows groups will have access to it. You may need to process the 
model occasionally if the data changes.  Finally, once the model is deployed, you can use a variety 
of technologies to query the model and deliver the prediction results to the end users, including 
standard reports, or custom applications. To learn more about the data mining process, read the 
excellent book Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services (see 
Resources section). 
 
Now that we’ve covered the essentials, let’s put data mining in action. We will demonstrate the 
seven-point framework we’ve just introduced by building a targeted campaigning mining model 
to identify the most likely buyers of Adventure Works bicycle products. 

7.3 Targeted Campaigning Example 
Suppose that Adventure Works has introduced a new bicycle product. The Adventure Works 
marketing department is planning a campaign to promote the new bicycle. As you can imagine, 
promotion campaigns are not cheap. In the case of a mailing campaign, promotion materials 
need to be designed, printed, and mailed to customers. Radio or TV campaigns are even more 
expensive. It certainly makes sense to focus the marketing effort on those groups of customers 
who are most likely to purchase the product. In addition, a mining model could help us identify 
the promotion channel where these customers are likely to be found. For example, if the data 
mining results indicate that predominantly teenagers purchase a given product, the management 
could decide to run an advertisement on MTV.   

7.3.1 Defining the Mining Domain 
Instead of campaigning to its entire customer base (more that 14,000 customers), the Adventure 
Works management has asked you to identify a subset of customers who are most likely to 
purchase the new bicycle. The data mining domain you need to solve is a classic example of the 
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classification mining task. Consulting with Table 7.2, you realize that there are several algorithms 
that you can use to perform it. As part of the process of building the data mining model, we will 
try a couple of them to identify the most accurate algorithm.   

7.3.2 Preparing the Data 
Unlike dimensional modeling, the business metrics that need to be passed as in input to a mining 
model typically originate from dimension-type tables (not fact tables). Since the focus of our 
campaigning task is customer-oriented, we need to load the data mining model with data from a 
customer profile table. The DimCustomer dimension table is the natural choice since it captures 
the profile details of the customers who purchase Adventure Products online.  

 
How do we determine the input dataset schema? Unfortunately, there are no fixed rules and you 
may find that knowing your data beforehand could be helpful. For example, we know that the 
Adventure Works OLTP sales application captures the customer demographics data. Therefore, 
it could certainly be useful to seek a correlation between these attributes and the customer 
decision to purchase a new bike. One practical approach to examine data and evaluate the 
usefulness of a given column is to use the data exploration feature of the DSV Designer. You 
can use the Pivot Table, Chart, and Pivot Char tabs to find the distribution of the column values, 
the content type (discrete or continuous), and possible correlation link among columns. After a 
few iterations, our input dataset schema may look like the one shown in Figure 7.9. 
 For the targeted campaign scenario, all input columns are derived from the DimCustomer 
table (no nested tables are needed). The most important column is the ProductCategory column 
which will be used both as an input and predict column. That’s because we want to use the 
historical sales statistics to predict future behavior (the likelihood of a group of customers to 
purchase products from a given category). Breaking down the data mining results per product 
category makes our model more universal. Our data mining model will find data correlation 
patterns in the customer profile data based on the product category selected. When Adventure 
Works introduces a new bicycle, the marketing department can use the same model to find 
potential customers for this product by simply filtering the results.  

7.3.3 Constructing the Data Schema 
The only trick when constructing the input dataset is querying the customer order history to get 
the product category of the purchased bicycle. To accomplish this, we need to look up data in 

Figure 7.9   When determining the 
schema of the input dataset, identify 
which attributes could be used as 
input columns to influence the data 
mining prediction.  
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table FactInternetSales in an attempt to find an order for a bicycle product (ProductSubcategoryKey 
= 1). However, a customer may have purchased more than one bicycle. Obviously, in this case, 
we cannot assign a single product category to the customer since there isn’t a one-to-one 
relationship between the customer and the product category. For the sake of simplicity, we will 
ignore the customers who have purchased more than one bicycle.   
 Since we will be using a relational data source, we need to build a data source view (Bike 
Buyers.dsv) on which the mining structure will be built. If you can get the database administrator 
to grant you permissions to create new objects, by all means, consider using a SQL view for the 
query statement needed to join the required tables. As noted in chapter 2, SQL views have 
certain performance and functional advantages over data source views. Chances are, though, that 
the larger the enterprise and the more people involved, the less likely it is to finish your project 
on time. Let’s take the data source schema as it is and build a DSV named query called Custom-
ers on top of it, which is based on the following SQL statement (abbreviated): 
SELECT C.CustomerKey, C.MaritalStatus, … ,  
  DATEDIFF(yy, C.BirthDate, GETDATE()) AS Age,  
  CustomerFilter.Subcategory AS ProductCategory 
FROM DimCustomer AS C INNER JOIN 
       (SELECT C.CustomerKey, PS.EnglishProductSubcategoryName AS Subcategory 
        FROM DimCustomer AS C 
  INNER JOIN FactInternetSales AS S … 
  INNER JOIN DimProduct AS P ON S.ProductKey = P.ProductKey 
  INNER JOIN DimProductSubcategory AS PS 
  WHERE (PS.ProductCategoryKey = 1) 
GROUP BY C.CustomerKey, PS.EnglishProductSubcategoryName 
HAVING(COUNT(PS.ProductSubcategoryKey)=1)) AS CustomerFilter  
ON C.CustomerKey = CustomerFilter.CustomerKey 

  
The subquery statement is used to filter out the customers that have purchased multiple bicycles. 
The first dozen rows of the dataset derived from executing this query are shown in Figure 7.10. 
The ProductCategory column contains the product category of the item bought by the customer. 
In addition, I set the CustomerKey column as a logical primary key because it uniquely identifies 
each customer (a mining case represents a customer). 

7.3.4 Building the Model 
The next step involves constructing the data mining structure and a data mining model(s). The 
easiest way to perform this task is to use the handy Data Mining Wizard by following these steps.  

 
Figure 7.10    Consider using a named query to construct the input dataset 
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Constructing the mining structure 
1. Open the Ch07 solution file. Right-click on the Mining Structures folder and choose New Mining 

Structure. BI Studio launches the Data Mining Wizard. Click Next. 

2. In the Select the Definition Method step, select the From existing relational database or data warehouse 
option since our structure will be loaded from the AdventureWorksDW relational database. 
Click Next. 

3. In the Select the Data Mining Technique step, you need to pick an algorithm to perform the data 
mining task at hand. Glancing at Table 7.2, we determine that the Microsoft Decision Tree 
algorithm is especially suited for classification tasks, such as targeted campaigns. Accept the 
default Microsoft Decision Tree algorithm and click Next.  

 
Note  By default, the Algorithm name dropdown lists only the algorithms provided by Microsoft. If you have 
developed and configured a custom algorithm, it will appear in the dropdown as well. 

4. In the Select the Data Source View step, select the Bike Buyers data source view we discussed in 
the Construct data schema step. Click Next to advance to the Specify Table Type step (Figure 7.11). 

5. In our scenario, the entire input dataset is contained in a single DSV table. The Data Mining 
Wizard has pre-selected the Customer table as a case table. Click Next. 

6. In the Specify the Training Data step (Figure 7.12), you need to identify the input and predict 
columns. In our case, we need to predict the classes of customers that will buy a bike. Therefore, 
we only need one predict column. Select the ProductCategory column as both an Input and Predict 
column (Predict Usage type). 

7. You can check the input columns manually (hold Shift for continuous selection), or you can ask 
the wizard to suggest indicative input columns by sampling the source data. Try the latter 
technique by clicking on the Suggest button. The Suggest Related Columns dialog appears and 

Figure 7.11  A data mining model 
can have only one case table.  
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starts sampling the case table in an attempt to find useful correlations between the predict 
column and the rest of the columns. 

8. In the Suggest Related Columns dialog, select all columns with a score greater than zero and click 
OK to return to the Specify the Training Data step. Click Next to advance to the Specify 
Columns’ Content and Data Type step (Figure 7.13). 

9. As noted, the data mining model needs to know the content type and data type of the columns. 
You can specify the content type manually or ask the wizard to detect it for you by probing the 
database schema. We will gladly take advantage of the second approach. Click on the Detect 
button to let the wizard discover the column’s content type and data type. Click Next. 

10. In the Completing the Wizard step (Figure 7.14), name the data mining model Targeted 
Campaign. Name the Mining model TargetedCampaignDT to denote the fact that the model 
uses the Microsoft Decision Trees algorithm (recall that one structure may include several data 
mining models). Check the Allow drill through checkbox. We will find out what it does in a 

Figure 7.12  The Suggest 
Related Columns dialog 
samples case data and 
suggests input columns.  

Figure 7.13   Click the Detect button 
to let the Data Mining Wizard probe 
the database schema and detect the 
columns’ content type and data type.  
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moment. Click Finish to let the Data Mining Wizard create the model and open it in the Data 
Mining Designer. 

Introducing the Data Mining Designer 
Undoubtedly, you will find the Data Mining Designer (Figure 7.15) very similar to the Dimen-
sion Designer. It has a tabbed user interface consisting of five tabs. As you would use the 
Dimension Structure tab to make changes to dimension attributes, use the Mining Structure tab 
to make changes to the mining structure. Examples of typical structure tasks you can perform are 
adding columns or nested tables, renaming columns, deleting columns, etc. Remember that any 
changes of the mining structure will require re-processing the structure.  
 

 

Figure 7.14   Enable drillthrough to 
let the end user see the source data 
for the model.  

 

 

Figure 7.15   Use the Properties window to set the column properties and bindings. 
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One outstanding task we need to address is changing the structure key to qualify the input cases 
correctly. As it stands, the structure key uses the CustomerKey column only. As a result, if the 
case dataset has duplicated values in the CustomerKey column, these values will be ignored. This 
will be the case when a customer has purchased more than one bike. Indeed, if you run the 
Customers named query that feeds the structure, you will find that it brings 10,066 rows.  
 However, if you process the structure and examine the results in the Mining Model Viewer, 
you will find that the total number of cases contained in the structure is 7,273 only. As you know 
by now, the server ignores the duplicated keys when it processes the structure. We could keep 
this behavior and ignore the repeating customers but this will likely skew our results. Instead, 
let’s use a key collection for the structure key. The net result of doing this is that a repeating 
customer will be treated as a new case and we will have 10,066 input cases.   

1. In the Data Mining Designer, switch to the Mining Structure tab and select the CustomerKey 
column.  

2. Click on the ...  button inside the KeyColumns property to open the DataItem Collection Editor. 

3. Add the ProductCategory column to create a composite key consisting of the CustomerKey and 
ProductCategory columns (see again Figure 7.15).  

4. Suppose you would like to see the customer name instead of the key when drilling through the 
customer data.  Select the Customer Key column and create a new binding to bind the Name-
Column property to the FullName column.  

Adding a new mining model 
The Mining Models tab (Figure 7.16) displays the mining models that are contained within the 
structure. Since we’ve just created the structure, it contains only the TargetCampaignDT model 
that uses the Microsoft Decision Trees algorithm. You can change the way a given column is 
used by the model. For example, if you decide not to use the Product Category column as an 
input to the Decision Trees algorithm, we can change its Usage from Predict to PredictOnly. You 
can also choose to ignore a column. For example, the customer’s name is certainly not useful for 
mining purposes and we should ignore it to make our model more efficient. An algorithm may 
support various parameters that you can use to fine-tune the algorithm calculations. In most 
cases, the default settings are just fine. If you need to change the parameters, right-click on the 
model and choose Set Algorithm Parameters.  

Figure 7.16  The columns of 
a structure may have 
different usage types in the 
containing model(s).  
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You may need to add additional models if you wish to compare the accuracy of different 
algorithms in order to choose the best fit for the task at hand. You may find the structure-model 
approach similar to the Controller-Viewer design pattern. You use the Mining Structure tab to 
define the schema definition and handle data storage and processing tasks (Controller) and then 
create multiple models (Viewer) on top of it to predict and show data in various ways. For 
example, a classification data mining task can be performed by the Microsoft Naïve Bayes 
algorithm as well. Follow these steps to add a new model to the Target Campaign mining 
structure that uses the Naïve Bayes algorithm. 

1. Right-click anywhere inside the grid and choose New Mining Model. Alternatively, click the Create a 
related mining model toolbar button. 

2. In the New Mining Model dialog, name the new model TargetedCampaignNB and select the 
Microsoft Naïve Bayes algorithm in the Algorithm name dropdown. Click OK to close the dialog. 

3. The Data Mining Designer complains that the Naïve Bayes algorithm doesn’t support the 
content type of the Age, Number Cars Owned, Total Children, and Yearly Income columns. 
That’s because the content type of these column is continuous, while the Naïve Bayes algorithm 
supports only discrete columns. Accept the confirmation dialog to ignore these columns. The 
TargetedCampaignNB model is added as a new column in the grid. The usage type of the above 
four columns is set to Ignore and won’t be used by the Naïve Bayes algorithm.  

Creating a discrete column 
But what if you need to use these columns? For example, there is probably a strong correlation 
between customer income and the type of bicycle a customer would buy. It is possible to use a 
continuous column with algorithms that don’t support this content type provided that you 
discretize the column.  To leave the Decision Tree model unaffected, we will add a new structure 
column (Yearly Income Discrete) to the Targeted Campaign mining structure and use it as an 
input to the TargetedCampaignNB model. 

1. Switch to the Mining Structure tab. Right-click inside the Targeted Campaign column tree and 
choose Add a Column. 

2. In the Select a Column dialog, choose the YearlyIncome column and click OK. A new column 
called Yearly Income 1 is added to the structure. 

3. Rename the new column Yearly Income Discrete. Click Yes in the confirmation dialog that 
follows to propagate the new name to the data mining models that use the column. 

Figure 7.17   You can discretize 
structure columns with algorithms 
that don’t support the continuous 
content type.  
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4. In the Properties window, change the column content to Discretized, the DiscretizationBucket-
Count property to 5 and leave the DiscretizationMethod to Automatic (see Figure 7.17).  As a 
result of these changes, the server will group the customers into five income buckets. 

5. Flip to the Mining Models tab and change the Usage type of the Yearly Income Discrete column 
to Input.  

6. Deploy the project to process the mining structure and the two models. Alternatively, click on 
the Process button (the leftmost toolbar button) to process the structure.  Processing the 
structure will load it with data from the Customer table and train the models. 

7.3.5 Exploring the Model 
This is where the fun begins! We are ready to explore the predicted patterns found by our data 
mining model. Each Microsoft algorithm comes with its own viewer that is specifically designed 
to display the algorithm results optimally. We will start by examining the Decision Trees Viewer 
followed by the Naïve Bayes Viewer.  

 
Figure 7.18  Use the Decision Tree Viewer to find the distribution of the customer population.  
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Interpreting the Decision Trees results 
Switch to the Mining Model Viewer tab. The TargetedCampaignDT mining model should be 
selected by default in the Mining Model dropdown. The Decision Trees Viewer is displayed 
(Figure 7.18). Each predicted column generates a separate decision tree. Since, in our case, we 
have only one predicted column, there is only one entry in the Tree dropdown (Product Cate-
gory). By default, the viewer displays the distribution of the customer population for all product 
categories (the Background dropdown is set to All cases).  

 
Tip  You can copy the graph as a picture by right-clicking on the graph and choosing the Copy Graph View or 
Copy Entire Graph context menus. If the viewer uses histogram charts, they will be copied as HTML.  

Understanding the Decision Tree Graph 
Let’s see what educated conclusions we can make by inspecting the decision tree graph. As 
noted, the Microsoft Decision Trees algorithm is typically used for classification tasks. Each 
node of the tree corresponds to a customer class. When the background filter is set to All Cases, 
you can use the Decision Trees Viewer to find which factors may influence the customer 
decision to purchase a bike. For example, the model has determined that the most significant 
factor is customer income.  That’s why, the first split (after the root All node) is done on the 
customer age attribute. 
 The background color of each tree node is the most important visual indicator. The darker 
the color is, the larger the customer population. The root node of the tree is always the darkest. 
Hovering on top of the root node, or examining the mining legend, reveals that we have 10,066 
cases (customers). From them, 32% have purchased mountain bikes, 47% road bikes, and 21% 
touring bikes. The same information can be derived approximately by glancing at the color bar 
inside each node. The bar has three colors because we have three distinct values in the predicted 
column; red for Mountain Bikes, yellow for Road Bikes, and blue for Touring Bikes).  
 Tracing the tree graph, we discover that the second darkest node represents 6,557customers 
with yearly income between $26,000 and $74,000. Therefore, this group of customers is most 
likely to purchase a bike. By clicking on this node and looking at the legend, we discover that 
more than half of these customers (56%) have purchased road bikes. Further, the Decision Trees 
algorithm has made another split on the customer income because it has discovered that, out of 
6,557 customers, more than 5,000 customers are actually within the $26,000-$64,400 bracket.  
 Finally, the second most important factor after customer income is the number of cars a 
customer owns. The algorithm has concluded that customers with less than four cars are most 
likely to purchase a bicycle.  Therefore, if the objective of our mining study is to identify poten-
tial bicycle buyers, this could be a good group to target. 
 What if the marketing department is interested in narrowing down the customers to those 
that are most likely to purchase a mountain bike? No problem. Change the Background drop-
down to Mountain Bikes and voila!  Interestingly, now we have two potential groups of custom-
ers we can target. First, we have customers with income greater than $74,000 and older than 37 
years. Actually, this makes sense considering that mountain bikes tend to be more expensive. 
Second, we have a much smaller cluster of people with income between $64,400 and $74,000 
who are 61 years old or older.  

Drilling through 
How can we see the individual customers that belong to a given group, so the marketing 
department can contact them to rekindle their interest in AW products (or spam them)? This is 
where the drillthrough feature comes in. As you would recall, we enabled this feature in the last 
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step of the Data Mining Wizard. Alternatively, since drilling through is a model-level feature, you 
can use the AllowDrillThrough property of a data mining model to enable or disable drilling 
through the model. 

 
Note  Similar to dimension or measure group drillthrough, model drillthrough is not enabled by default for 
security reasons because it allows end users to browse the source data for the model. The model designer 
has to make a conscious decision to enable this feature.   

 
Once AllowDrillThrough is enabled, you can simply right-click on a tree node and choose the 
Drill Trough context menu to browse the source data forming the corresponding group. This 
action will pop up the Drill Through window with the cases displayed in a grid format. The 
classification criterion is shown on top. You can copy all records and paste them in a text file or 
an Excel spreadsheet. 

Understanding the Dependency Network 
In real life, your decision tree may have many splits and it may be difficult to find the most 
significant factors by using only the Decision Tree tab. The Dependency Network tab (Figure 
7.19) is designed to help you find these attributes quickly.  A Decision Trees model may have 
more than one predicted attributes. To filter the links that are correlated to a given predicted 
attribute, simply select that attribute in the diagram. In our case, we have four attributes (Yearly 
Income, Age, Commute Distance, and Number Cars Owned) that may influence a customer’s 
decision to purchase a bike.  

 
To find the strongest links, slide down the slider on the left of the diagram. The slider scale will 
have as many nodes as the number of the distinct values of the predicted column. By sliding it 
down, you are in essence filtering out the less significant links. In the Targeted Campaign 
scenario, the Decision Trees algorithm finds that the most significant factor influencing AW 
customers to purchase a bike is the customer’s yearly income (we don’t need a mining model to 
figure this out, do we?).  Backing up one nudge, we determine that the second important factor is 
customer’s age. 

Figure 7.19   Use the Dependency 
Network graph to find quickly the 
links that have the strongest 
correlation factor.  
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Interpreting the Naïve Bayes results 
Now, let’s explore the results of the Naïve Bayes model by selecting the TargetedCampaignNB 
model in the Mining model dropdown.   

 

Note  The Naïve Bayes algorithm doesn’t assume relationships among the input attributes. It is a pair-wise 
algorithm, meaning that it simply calculates the correlation between an input and a predict attribute, e.g. 
Age vs. Product Category. This is why, the algorithm is called Naïve Bayes. If correlating input columns is 
significant (e.g. Age vs. Income), you need to use more sophisticated algorithms, such as Microsoft Deci-
sion Trees. In addition, the Naïve Bayes algorithm doesn’t support the drillthrough feature. As an upside, 
the Naïve Bayes algorithm is less computationally intensive and processes very fast. 

 
The first tab is the Dependency Network tab algorithm:dwhich is the same as with the Decision 
Trees model. You can use it to get a good overall picture of the relative importance of the input 
columns. Since we decided to ignore the Age column when building the model, we have only 
three columns (attributes) with the Yearly Income Discretized being the most significant again.  

Understanding the Attribute Profiles tab:attribute profiles 
The Attribute Profiles tab (Figure 7.20) gives you a breakdown of the population of data in the 
input columns (attributes). The histogram has as many columns as the number of the discrete 
values of the predicted column, plus a column for All and missing values. For example, by just 
looking at the columns, we can deduce that there are 10,066 input cases (customers) from which 
4,726 have bought Road Bikes, 2,125 Touring Bikes, and 3,215 Mountain Bikes. 
 The histogram shows the input attributes in rows and their discrete values (states) in the 
States column. You can roughly estimate the breakdown of the state population by inspecting 
the histogram columns. To find out the exact numbers, hover on top of the histogram. To 
determine the strongest correlation factors, examine their population distribution by comparing 
the Population (All) column and the predicted valued of interest.  
 

 
For example, if you inspect the Population column of the Yearly Income Discrete row, you can 
deduce that, overall, most customers have an income less than $44,000. By hovering on top of 
the histogram, or examining the mining legend (not shown), you can further find that this 

Figure 7.20   Use the 
Attribute Profiles chart to 
find the population 
distribution of the input 
attributes.  
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segment contributes to about 40% of the overall population. However, if you now inspect the 
Mountain Bikes histogram, you will find that the majority of the customers purchasing mountain 
bikes are within the $44,000 – $70,000 income bracket (the second stacked bar from the top) 
because its bar is wider. This means that this customer segment could be potentially targeted 
during a mountain bike promotion campaign. 

 

Understanding the Attribute Characteristics tabalgorithm:attribute characteristics 
A more accurate picture of a particular customer class could be obtained by switching to the 
Attribute Characteristics tab (Figure 7.21). By examining the chart, we can deduce that most 
customers who purchase mountain bikes are home owners with an income between $44,000 and 
$70,000 and are professionals. 

Understanding the Attribute Discrimination tabalgorithm:d 
Finally, you may be interested to compare two groups side by side. For example, you may need 
to find out how the Mountain Bikes customer profile compares against that of Road Bikes. You 

Figure 7.21  Use the Attribute 
Characteristics chart to determine 
the strongest correlation factors 
for a given class.  

 

Figure 7.22  Use the 
Attribute Discrimina-
tion tab to compare 
profiles side by side.  
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can do this by using the Attribute Discrimination tab (Figure 7.22). Now we can conclude that 
customers who purchase mountain bikes tend to have higher income than those buying road 
bikes. In addition, the mountain bike buyers tend to have managerial or professional jobs, while 
the second group of customers tends to have manual or skilled manual occupations.  

7.3.6 Evaluating the Model 
Now that we’ve implemented two mining models for the targeted campaign scenario, how do we 
know which one is better? More importantly, how do we know if our data mining model predicts 
efficiently? We can use the Mining Accuracy Chart tab to evaluate the accuracy of our model(s) 
by following these steps: 

Specifying column mappings 
1. Click on the Mining Accuracy Chart tab. The Mining Accuracy Chart opens and its Column 

Mapping tab is selected (Figure 7.23). You can use the Column Mapping tab to specify an input 
table that holds the representative dataset that you want to test.  

2. Click the Select Case Table button in the Select Input Table(s) pane and select the Customers 
table from the Bike Buyers DSV. For demo purposes, we will use the same input table that we 
used to train the model. In real life, it may make sense to prepare a smaller dataset that you can 
easily verify.  

3. The Data Mining Designer tries to map automatically the columns of the mining structure and 
the input table by naming convention. If the columns have different names, you can link them 
manually by dragging a column from the Mining Structure pane and dropping it over the 
corresponding column in the Select Input Table(s) pane. Drag the Yearly Income Discrete 

Figure 7.23  Use the 
Column Mapping tab to 
bind the columns of the 
mining structure to the 
columns of the test 
dataset.  
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column which we created for the Naïve Bayes algorithm from the Mining Structure pane and 
drop it on the Yearly Income column in the Select Input Table(s) pane.  
 
Optionally, you can filter the test dataset (e.g. Customers who are 25 years or older) by creating a 
filter criteria in the Filter grid. If you need to test the model accuracy for a particular value of the 
predicted column, you can specify this value in the Predict Value column of the Select predictable 
columns… grid. Leave the Predict Column empty for now to test the model accuracy irrespective 
of product category.  

Understanding lift charts 
In our case, the customer dataset has about 10,000 customers. Suppose that, due to budget 
constraints, only 50% of the customer population will be targeted (5,000 customers). Naturally, 
not all customers will be interested in buying the new product. How can we identify the most 
likely buyers?  Here is where a lift chart could help.  
 Flip the Lift Chart tab and notice that it has four lines, as shown in Figure 7.24 (the line 
closest to the X-axis is not easily discernable). In a perfect world, each targeted customer will 
respond to the campaign (100% penetration). This is what the topmost line represents. The 
bottom line shows the customer penetration rate if the customers are chosen at random. For 
example, if we are to pick 5,000 customers at random out of the entire 10,000 customer popula-
tion, we will get only about 12% customer penetration.  
 However, if the marketing department is willing to try our model, they will get a much better 
response rate, as the middle two lines show. Any improvement over the random line is called a 
lift, and the more lift a model demonstrates, the more effective the model is. In our case, the 
darker line corresponds to the Decision Trees model, while the lighter one represents the Naïve 
Bayes model. As you can see, the Naïve Bayes model gives a better penetration results in a 
population of about 30% (3,000 customers). After that, the Decision Trees model outperforms 
the Naïve Bayes model.  

Figure 7.24  Create a lift 
chart to evaluate the 
model effectiveness.  
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Now, hover on top of the TargetedCampaignDT line where it intersects with the 50% overall 
population vertical line. It turns out, that if we target 50% of the customers, the Decision Trees 
algorithm will give us 28% customer penetration rate, while if we select customers at random, we 
will get only 13% response rate. 

 
Now, suppose that the marketing campaign promotes mountain bikes only. Switch to the 
Column Mapping tab and change Chart Type dropdown to Lift Chart. Select Mountain Bikes in 
the Predict Value column of the bottom grid. Flip back to the Lift Chart tab and notice that its 
Y-axis caption has changed to Target Population [Mountain Bikes] % to reflect the fact that now we 
evaluate the model accuracy for the Mountain Bikes product category only (Figure 7.25). 
  The ideal model line reveals that, in a perfect world, we need to contact about 30% of the 
customers to identify all mountain bike buyers. Again, the Decision Trees algorithm outperforms 
Naïve Bayes. At 50% overall population, the Decision Trees model will identify 66% of the 
potential customers interested in mountain bikes. If you are not satisfied with the accuracy 
results, you have several options. Start by verifying the data in the input dataset. Make sure that it 
is a good representative of the task you need to model. Next, re-validate the structure and mining 
model definitions. Finally, consider using a different algorithm.  

Creating a profit chart 
Now, let’s add a financial dimension to our model evaluation study and find how much profit 
each model could generate by creating a profit chart. Change the Chart type dropdown to Profit 
Chart. Click on the Settings button and enter the settings shown in Figure 7.26. In our hypotheti-
cal example, we would like to target 5,000 customers. The marketing department has estimated 
that the fixed cost for running the campaign will be $10,000, e.g. for designing, printing, and 
mailing the promotion materials. In addition, there is $5 individual overhead cost per customer, 
e.g. for customer representatives responding to customer questions. Finally, based on past 

Figure 7.25   You can change 
the lift chart to evaluate a 
given predict value.  

 Tip  You can re-position the population line by clicking on a vertical grid line. 
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campaigns, the marketing department expects $50 as expected revenue per customer from the 
campaign.  

 
Based on these numbers, by examining the profit chart we could determine that we can actually 
lose money if we target only 10% of the customer population. Between 10% and 30%, the Naïve 
Bayes model will generate us more profit. After that, the Decision Trees model is the undisputed 
winner. If we target 50% of the customer population, we can expect our campaign to produce a 
profit of $47,314 with the Decision Trees algorithm. Using the profit chart, you can run what-if 
scenarios to find out the maximum return for your campaign investment. At this point, our 
models are trained and evaluated. Next, we need to deploy our model to production so it can be 
used for actual predictions against new customers. 

Getting the predicted results 
In the preceding steps, we used the Mining Accuracy Chart to compare the accuracy of the 
Decision Trees and Naïve Bayes models. We’ve identified that the Decision Trees model 
performs better for the classification task at hand. Specifically, the Decision Trees model could 
identify about 60% of the potential mountain bike buyers from a total population of 5,000 
customers.  
 Suppose that Adventure Works Marketing department has a list of new customers. Let’s run 
this list by the Decision Trees model to find which customers are likely to purchase a mountain 
bike based on the learned patterns.  For the purposes of our demo, we will use the same input 
table (Customers) that we used to train the model. To get the model predictions, we need to 
query the model by submitting a DMX SELECT query. Creating the query is a child’s play with 
the excellent DMX Query Builder provided by the Mining Model Prediction tab.  Follow these 
steps to create a mining query to predict the mountain bike buyers. 

1. Click on the Mining Model Prediction tab (Figure 7.27). 
 

Figure 7.26   Create a 
profit chart to determine 
the profit generated by 
the campaign.  
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2. Click the Select Model button in the Mining Model pane. In the Select Mining Model dialog, 
expand the Targeted Campaign structure and select the TargetedCampaignDT model to use the 
Decision Tree model.  

3. Next, we need to select the table that contains the input dataset. In the Select Input Table(s) 
pane, click the Select Case Table button and select the Customers table from the Bike Buyers 
DSV. Note that the Data Mining Designer automatically correlates the mining model and input 
table columns by naming convention. 
 
You can think of the Predict Mining Model tab as an ad hoc DMX query designer. As with the 
query designers included in the SQL Server Management Studio, it supports Design, Query, and 
Result modes. Let’s use the Design mode to build our DMX query interactively. 

4. First, let’s select the columns we want to see in the predicted dataset. Drag the CustomerKey 
column from the input table (Select Input Table pane) and drop it onto the Source column of 
the grid. Alias the column as Customer ID. 

5. Drag the FullName column and alias it as Full Name. 

6. DMX supports various prediction functions. The function that we need is Predict.  It allows you 
to predict a column from a given mining model. On the third row of the grid, expand the Source 
dropdown and select the Prediction Function item. Expand the Field column and select the first 
Predict function (there are two overloaded versions). Drag the Product Category column from the 
TargetedCampaign mining model to the Criteria/Argument column to replace the default criteria 
of the Predict function. 

 
Figure 7.27    Use the Mining Model Prediction tab to build and execute a prediction query. 
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7. Since we are interested in predicting only potential mountain bike buyers, we need to filter the 
Product Category column. In the fourth row of the grid, expand the Source dropdown and select 
Custom Expression. Drag the Product Category column from the TargetedCampaignDT mining 
model to Field column. In the Criteria/Argument column, enter = ’Mountain Bikes’. Clear the 
Show checkbox since we don’t want this column to show up in the results (it is just used for 
filtering). 

8. Optionally, expand the left-most toolbar button and choose Query (or select Mining Model  
Query menu) to view the underlying DMX statement. Note the query statement is actually an 
extended version of the T-SQL grammar and uses a PREDICTION JOIN construct to join the 
mining model and the input table.  

9. Expand the left-most toolbar button and choose Result to submit the query to the server and 
retrieve the results in a tabular format. In my case, the query returns 3,595 customers that may be 
interested in purchasing mountain bikes. You can click the Save toolbar button to insert the 
results into a relational table. 

 
What if you want to specify the input values explicitly? For example, suppose you have a custom 
application that allows the end user to select a customer in order to find out if the customer is a 
likely buyer. In this case, you can use a singleton query. You can design this query by pressing the 
Singleton query button. The DMX Query Designer renames the right table to Singleton Query Input 
to denote the fact that now the values will be entered explicitly instead of retrieved from a 
relational table. Once the query syntax is ready, you can embed it in your application to pass the 
input criteria on the fly. We will see how this could be done in chapter 17. 

7.4 Summary 
Data mining is an exciting business intelligence technology. When properly used, data mining can 
help you derive valuable knowledge from mountains of data. It is a complementing, rather than 
competing, technology to OLAP. Use OLAP to aggregate data. Use data mining to discover 
patterns and trends. 
 Follow the seven-step data mining process to design and implement a data mining model. A 
data mining structure may contain more than one data mining model. Once the model is ready, 
train it with input data. The Mining Model Designer gives you the necessary tools to explore and 
evaluate a trained mining model. Once the model is in production, retrieve the predicted results 
by querying the model.  

 

Tip    You can find my version of the DMX query saved as TargetedCampaign.dmx in the Code\Ch07\DMX 
folder. The DMX query builder is also available in the SQL Server Management Studio. To use it, connect 
to the Analysis Services database, expand the Mining Structures node, right-click on a given model, and 
choose Build Prediction Query. Alternatively, instead of using the query builder or the Mining Model 
Prediction tab, you can execute this query as a DMX query. To do so, right-click on the SOS OLAP 
database in the Object Explorer and choose New Query  DMX. Make sure that the TargetedCam-
paignDT model is selected in the Mining model dropdown in the Metadata pane. Next, paste the query text 
and execute the query by clicking the Execute button. 
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7.5 Resources 
OLE DB for Data Mining Specification  

(http://shrinkster.com/52t) – The goal of the OLE DB for Data Mining Specification 
is to provide an industry standard for data mining so that different mining algorithms 
from various data mining ISVs can be plugged easily into user applications.   

Data mining models and structures and Data mining algorithms (part 1 and 2) webcasts 
(SQL Server Resource Kit) – Your essential resource for introducing you to the SSAS 
data mining 

CRoss Industry Standard Process for Data Mining (CRISP-DM) 
(http://shrinkster.com/62h) – The CRISP-DM methodology was conceived in late 
1996. It contains the corresponding phases of a project, their respective tasks, and re-
lationships between these tasks.  

SQL Server Data Mining: Plug-In Algorithms article by Raman Iyer and Bogdan Crivat 
(http://shrinkster.com/53b) – Describes how SQL Server 2005 Data Mining allows 
aggregation directly at the algorithm level. 

Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services book 
(http://shrinkster.com/8c4) – This book demonstrates how to apply data mining to a 
real-world situation using Microsoft SQL Server 2000, Microsoft SQL Server 2000 
Analysis Services, and Microsoft Visual Basic 6.0. 

 


