Power BI vs. Qlik

After Tableau and SiSense, Keeping ’em Honest continues with Qlik. Now, after they sold the company and took a hit in the latest Gartner’s quadrant, I didn’t expect much of a completion from Qlik but every now and then I run into a customer considering Qlik and willing to share Qlik’s feedback on how Qlik outshines Power BI in every possible way (can’t share these documents due to NDA although they are interesting and entertaining stories). But to be fair to Power BI, I’ll enumerate next a few reasons that customers have shared of why they prefer Power BI over Qlik and from my experience in in helping several customers transition to Power BI from Qlik. I’ll focus on Qlik Sense, which is the Qlik’s latest tool that competes head to head with Power BI.

Chasing the perfect tool (hint: there is none)? Instead, focus on architecture and data quality. Tools come and go, and they tend to leapfrog each other. Data quality and good foundation stays on.

Data Acquisition

  1. Connectors – the data journey starts with connecting to your data. According to Qlik’s documentation, it offers a very small set of connectors. By contrast, Power BI supports over 70 connectors and the list growing every month.
  2. Content packs – In Power BI, content packs delivered by Microsoft partners allow business users to get pre-packaged reports and dashboards from popular cloud services, such as Dynamics CRM, Salesforce, Google Analytics, Marketo, and many more, directly in Power BI Service (no need to use Power BI Desktop). No such a feature exists in Qlik.
  3. Complexity – One prevailing theme I hear from Qlik users is complexity where the tool requires the end user to be a developer to create scripts and import data. In fact, I know of a large organization in Atlanta which has hired a consulting company to create and maintain Qlik reports. So much about the self-service BI story. By contrast, Power BI Service and Power BI Desktop include user-friendly wizards.
  4. Data transformation – In Power BI Desktop, a data analyst can use the Query Editor to define repeatable steps to transform and cleanse the data before it’s imported in the data model. The Query Editor (Power Query in Excel) resonates well with business users. No such a tool exists in the Qlik world

Data Model

  1. Associative data model – Qlik continues to tout the “associative data model” (learn more in this video and its related videos on YouTube). Besides the self-service vs organizational BI propaganda, nothing new here that Power BI can’t do. As far as the extolled virtues of the “associative data model”, I couldn’t agree more with what Donald Farmer (a former Vice President at Qlik) had to say a while back. “Talking of engines, some have been misled to believe that QlikView’s supposed “associative analysis” represents some significant engine smarts. I have even heard analysts very misleadingly say that QlikView has “association rules” – implying some kind of data mining, such as Microsoft implements in its Data Mining server and Excel Add-ins. QlikView add to the confusion by talking about an associative “architectural model.” However, despite the hype, as Curt Monash points out (or rather, painfully extracted from QlikTech themselves through a long thread of comments) it is not so: “The associative aspect is really more meaningful in describing the end user experience, in that you see visually what is associated and is not associated with any particular selection or drilldown.” As Curt says, “Thank you for admitting that clearly!!! It wastes a fair amount of analysts’ time when your company pretends otherwise.” So, the associative model is nothing more that the relationship auto-discovery in Power BI Desktop.
  2. Data model capabilities — I said this many times and I’ll say it again – no other tool on the market comes even close to Power BI as far as its modeling capabilities which allow business users to create self-service data models that are on a par with models created by BI pros.
  3. Calculations – In Power BI, we use DAX, a language that is far more powerful than Qlik expressions.

Platform

  1. Ecosystem — No matter how good it is, a self-service visualization tool addresses only a small subset of data analytics needs. By contrast, Power BI is a part of the Microsoft Data Platform that allows you to implement versatile solutions and use Power BI as a presentation layer. Want to implement a real-time dashboard from data streams? Azure Stream Analytics and IoT integrates Power BI. What to show reports on the desktop from natural questions? Cortana lets you do it by typing questions or voice. Want to implement smart reports with predicted results? Power BI can integrate with Azure Machine Learning? Want to publish SSRS and Excel reports alongside interactive reports? Power BI supports this. Expect this strength to increase as Cortana Analytics Suite and prepackaged solutions evolve.
  2. Scalability and continuum – Despite Qlik’s scalability white papers that claim to scale to billions of rows, a desktop tool can get you up to a few million rows. Even if its technology can scale to much bigger data volumes, working with gigabyte files is no fun. Not to mention that you’d probably wouldn’t want millions for rows imported and exported all the time. At some point, you have to consider moving your models to a dedicated server. In MS BI, you can transition from Power BI Desktop to Tabular on the server. Same technology, same interfaces. In fact, I tell students that if you know Power BI Desktop, you already know 80% of Tabular. What’s Qlik’s continuum story?
  3. On your terms – Power BI lets you deploy your report to the cloud Power BI Service and on premises to the Power BI Report Server. Qlik is predominantly on-premises solution with a fledgling cloud offering. Besides, Qlik Sense Cloud is more expensive at $25/month vs $10/mo in Power BI (if you decide to go cloud).

Analytics

  1. Natural language – No equivalent to Power BI Q&A which allows business users to ask natural questions. Qlik has a basic story telling via the Narrative Data Science and so does Power BI.
  2. Advanced analytics – No integration with R or built-in machine learning capabilities, such as Quick Insights in Power BI.
  3. Real-time dashboards – Qlik doesn’t have the API to allow developers to push data to a dashboard that updates in real time.
  4. Geospatial reporting – Qlik’s geospatial reporting is not as robust as Power BI. For example, Power BI offers at least four mapping visualizations, including ShapeMap (supports custom shapes) and ArcGIS

Openness

  1. Reporting tools – Reporting tools come and go. If make a decision to go with Qlik, can you use another reporting tool to connect to it? By contrast, in Power BI you can analyze your data with any DAX or MDX capable tool, such as Excel.
  2. Custom visuals – Qlik claims that it can integrate with D3.js to allow developers to create custom visuals. In reality, Qlik extensions basically spit out HTML. By contrast, Power BI custom visuals adhere to predefine interfaces. What this means for a developer is that it’s much easier to implement and test custom visuals in Power BI.

Other

  1. Cost – I’ll let you do your own math here but the number one reason customers gravitate to Power BI is cost.
  2. Speed – Power BI gets new features every month. How often is Qlik updated?

pbivsqlik